QCD fits in diffraction ## Laurent Schoeffel CEA Saclay LOW X MEETING LISBON, PORTUGAL, June 28 - July 1 - 2006 Work done in collaboration with : C. Royon, S. Sapeta, R. Peschanski and E Sauvan - 1. QCD (DGLAP) analysis of HERA data (F₂^{D(3)}) implications for Tevatron... - 2. Good and Walker (dipole) approaches: - a. 2 gluons exchange model - b. BFKL parameterisation of $F_2^{D(3)}$ In progress : « saturation » based models # QCD (DGLAP) fits #### QCD fits on HERA data $$F_2^{D(3)} = \Phi_{IP}(x_{IP}) F^{QCD}(\beta, Q^2) + N_{IR} \Phi_{IR}(x_{IP}) F^{IR}(\beta, Q^2)$$ With input (Q_0^2) distributions : $$zS(z, Q^2 = Q_0^2) = \left[A_S z^{B_S} (1 - z)^{C_S} (1 + D_S z + E_S \sqrt{z}) \cdot e^{\frac{0.01}{z - 1}} \right]$$ $$zG(z, Q^2 = Q_0^2) = \left[A_G (1 - z)^{C_G} \cdot e^{\frac{0.01}{z - 1}} \right]$$ Reproduction of **fit A** from H1 publication $E_S=D_S=0$ and Q_0^2 scanned to find the best χ^2 | parameters | Our fit on H1 data | Table 3 of Ref. [2] (fit A) | |--------------------|---|-----------------------------------| | Q_0^2 | $1.75 \; { m GeV^2}$ | $1.75~\mathrm{GeV^2}$ | | Q_{min}^2 | $8.5~{ m GeV^2}$ | $8.5~{ m GeV^2}$ | | $\alpha_{ m I\!P}$ | 1.118 ± 0.008 | 1.118 ± 0.008 | | A_S | 1.10 ± 0.32 | 1.06 ± 0.32 | | B_S | 2.33 ± 0.35 | 2.30 ± 0.36 | | C_S | 0.61 ± 0.15 | 0.57 ± 0.15 | | A_G | 0.13 ± 0.03 | 0.15 ± 0.03 | | C_G | -0.92 ± 0.16 | -0.95 ± 0.20 | | N_{IR} | $2.8 ext{ } 10^{-3} \pm 0.4 ext{ } 10^{-3}$ | $1.7 \ 10^{-3} \pm 0.4 \ 10^{-3}$ | #### Data sets for the analysis: all existing measurements $$e+p \rightarrow e + X (GAP) Y$$ #### **Data Samples published:** - **1.** H1 LRG (M_V<1.6 GeV) - **2.** H1 FPS (M_Y=Mp : proton tagged but limited kinematic acceptance) - 3. ZEUS FPC $(M_{Y} < 2.3 \text{ GeV})$ - 4. ZEUS LPS (M_y=Mp) #### All samples converted to M_{γ} < 1.6 - \Rightarrow H1 FPS *1.23 (conversion factor from elastic to M_V<1.6 GeV) - ⇒ ZEUS LPS *1.23 - \Rightarrow ZEUS FPC *0.85(=0.70*1.23) **Strategy**: we add parameters (E_S,D_S) to get a result stable w.r.t. initial parameterisation - ⇒We do the fits independently on H1 LRG and ZEUS FPC - ⇒Then, on the 4 combined data sets - \Rightarrow kinematic space (Q²>4.5 GeV², M_x>2 GeV, β <0.8) # Result for the S,G distributions (central values) $\delta(S)\sim5\%$ and $\delta(G)\sim15\%$ (low z ; >25% at large z) # Result for the S,G distributions parameter values | parameters | H1RAP | ZEUSMX | All data seta | |--------------------|-------------------|-------------------|-------------------| | O_0^2 | $3~{ m GeV^2}$ | $3~{ m GeV^2}$ | $3~{ m GeV^2}$ | | Q_{min}^2 | $4.5~{ m GeV^2}$ | $4.5~{ m GeV^2}$ | $4.5~{ m GeV^2}$ | | $\alpha_{ m I\!P}$ | 1.120 ± 0.007 | 1.104 ± 0.005 | 1.118 ± 0.005 | | A_S | 0.28 ± 0.09 | 0.12 ± 0.02 | 0.30 ± 0.15 | | B_S | 0.13 ± 0.08 | - | 0.14 ± 0.11 | | C_S | 0.38 ± 0.08 | 0.50 ± 0.06 | 0.45 ± 0.13 | | D_S | 6.14 ± 0.82 | 5.65 ± 1.24 | 5.72 ± 0.92 | | E_S | -3.98 ± 0.22 | - | -3.66 ± 0.19 | | A_G | 0.24 ± 0.06 | 0.74 ± 0.15 | 0.20 ± 0.06 | | C_G | -0.76 ± 0.19 | 3.36 ± 1.16 | -0.76 ± 0.21 | | $N_{IR}(H1RAP)$ | 5.77 ± 0.55 | - | 6.65 ± 0.47 | | $N_{IR}(ZEUSMX)$ | - | - | - | | $N_{IR}(H1TAG)$ | - | - | 5.06 ± 0.52 | | $N_{IR}(ZEUSTAG)$ | - | - | 4.64 ± 0.48 | | Data set | χ^2 (stat. error) | χ^2 (stat. and syst. error) | nb of data points | |----------|------------------------|----------------------------------|-------------------| | H1 [2] | 302.0 | 217.9 | 240 | | H1 [3] | 50.1 | 27.5 | 57 | | ZEUS [4] | 192.8 | 109.5 | 102 | | ZEUS [5] | 52.1 | 22.7 | 45 | Good description! #### no dependence in Q₀² #### no dependence in $Q_{min}^2 => 4.5 \text{ GeV}^2$ is used ($\neq H1 \text{ publi}$) ### Impact for Tevatron - Possible measurement of the dijet mass fraction at the Tevatron sensitive to gluon density - ullet Request two jets of 25 GeV and a \bar{p} tagged in the DØ dipole roman pot detector as an example #### Uncertainty of the Gluon density at large z : multiply zG by (1-z)^v Result with the 1994 H1 data => v = 0.0 +/- 0.6 #### Impact for Tevatron Taking into account the poor determination of xG at large z ### Status for QCD fits - PDFs from all data sets compatible (within total error) - zG => essential piece of information for Tevatron/LHC... - => direct background to inclusive/exclusive Higgs prod. at LHC! - => better understanding of the large z Gluon density Pb: the whole procedure needs α_{DIFF} to be constant(Q²)? compatible with ZEUS published result? (under investigation in H1: HERAII data aviable) ## « Dipole » model fits #### Two-gluon exchange Model - LO realisation of the Singlet Exchange + γ^* wave function - BEKW parametrisation: [J. Bartels at al., Eur.Phys.J. C7, 443 (1999)] - → Modified form used [ZEUS coll., Nucl. Phys. B713 (2005)] $$x_{\mathbb{P}}F_2^{D(3)} = c_T \cdot F_{qar{q}}^T + c_L \cdot F_{qar{q}}^L + c_g \cdot F_{qar{q}g}^T$$ +IR Dominant terms: $$F_{q\bar{q}}^{T} \alpha \beta (1-\beta)$$ $$F_{q\bar{q}g}^{T} \alpha \log(1 + \frac{Q^2}{Q_0^2}) (1 - \beta)^{\gamma}$$ \searrow At low β \blacktriangle At medium β $$F_{q\bar{q}}^{L} \alpha \frac{Q_0^2}{(Q^2 + Q_0^2)} \log^2 \left(\frac{7}{4} + \frac{Q^2}{4\beta Q_0^2}\right) \beta^3 (1 - 2\beta)^2$$ ▲ Compare to data At large β ## Combined fit on the 4 data sets | Data set | χ^2 (total error) | nb of data points | |----------|------------------------|-------------------| | H1 [2] | 374.0 | 247 | | H1 [3] | 47.3 | 59 | | ZEUS [4] | 104.6 | 142 | | ZEUS [5] | 27.0 | 45 | Kinematic space $\mathbf{Q}^2 > 4.5 \; \mathbf{GeV}^2$ (no need for any cut in $\mathbf{M}_{\mathsf{X}}, \; \boldsymbol{\beta}$) Fit result plotted with H1 LRG and ZEUS FPC data sets **Good description** For illustration we show the same fit with preliminary H1 measurements (not included in the fit: 99-00 and 04) #### The different components from the BEKW fit ### Status of BEKW fits Economic and efficient parameterisation of all data! over the whole kinematic range (better than QCD-DGLAP fits) dependences on all variables in good agreement with data - In this model : α_{DIFF} depends of Q² - => precise experimental data are essential here... #### BFKL dipole approach: Bialas, Peschanski '97 '98 and Munier et al., '98 $$F_2^{D(3)} = \frac{1}{N_C e^2} \left(N^{in} (F_T^{D(in)} + F_L^{D(in)}) + N_T^{el} F_T^{D(el)} + N_L^{el} F_L^{D(el)} + N_R F_2^{\mathbb{R}} \right)$$ #### Reminder from Nucl.Phys.B534:297-317,1998 the different components ## Combined fit on the 4 data sets | Data set | χ^2 (total error) | nb of data points | |----------|------------------------|-------------------| | H1 [2] | 361.6 | 232 | | H1 [3] | 32.8.7 | 59 | | ZEUS [4] | 189.5 | 142 | | ZEUS [5] | 17.4 | 45 | #### No need for a IR component F_Dⁱⁿ => natural factorisation breaking (Regge) | parameters | value | |--------------------|----------------------| | $\alpha_{ m I\!P}$ | 1.329 ± 0.006 | | Q_0 | 0.364 ± 0.009 | | N^{in} | 0.003 ± 0.001 | | N_T^{el} | 127.730 ± 13.776 | | N_L^{el} | 91.455 ± 9.850 | quite large (L)! But a fit with elastic (L)/(T)~30% also fine! ### Status of the BFKL dipole fits - Kinematic range more limited / previous models - Ratio L/T tends to be large for the favored fit ~60% for the elastic component (intermediate β) - => measurement of FL - No IR needed! new feature : natural factorisation breaking? ## Conclusions - Different models describe the data with different basis assumptions : $\alpha_{DIFF}(Q^2)$, IR, ... - Today: BEKW approach favored: less parameters/large kinematic range and a good χ² In progress : saturation based models - Tevatron/LHC data needed - new prel. H1 analysis with >6 times more Lumi + high Q² HERAII data aviable for analysis...